
NASA-T_IlZ06.$

RNR-87-005

Remote Workstation Administration

in a Supercomputing Environment

Eric Raible

June 11. 1987

Introduction

The Numerical Aerodynamic Simulation (NAS) facility [1] at NASA-AMES Research Cen-

ter is composed of a heterogeneous collection of computers all running UNIX with TCP/IP.

More specifically, the current machines are a Cray 2, two Amdahl 5840's, four Vax 780's,

and thirty Silicon Graphics Iris workstations. A high-speed Network Systems Corporation

(NSC) Hyperchannel network interconnects all of the machines. In addition, all machines

except for the Gray have an ethernet interface.

This paper discusses our experiences in the system administration of the Silicon Graph-

ics workstations in this environment. It begins with a chronological description of some of

the problems which we encountered as network connectivity became a significant concern.

Our early, naive approach to workstation administration is described, as are various prob-

lems we encountered. As a result of this experience, we were able to prototype some tools

and techniques to solve the problems. Finally, the tools that are presently thought to be

useful are described in some detail.

The Journey

The system administration of the workstations was generally considered to be a solved

problem in January of 1986. At that point, all of our machines were running an un-

modified Silicon Graphics (SGI) operating system, which included their XNS networking

implementation. Although using their code "as-was" had the advantage of simplicity, it did

not meet our needs at _he time; a basic design goal of the NAS was that all machines run

TCP/IP. It was because of this goal that we made so many changes to the Iris operating

system. Unfortunately, these changes were completely incompatible to the work that SGI

was doing at the time. In addition, TCP/IP requires many more programs and configura-

tion files that XNS. For these reasons we were forced to take system administration more

seriously.

The ad hoc approach

Perhaps the most memorable aspect of the NAS in early 1986 was the unreliability of

the hyperchannel and ethernet networks. Most of these problems stemmed from the fairly

radical idea of having TCP/IP on both hyperchannel and ethernet on every machine (except

the CRAY2, which has only hyperchannel). As a direct consequence of this decision, every

machine on the network was undergoing extensive modifications in order integrate these two

quite different network interfaces into its operating system. In addition to the development

on each machine, there was also the nonltrivial problem of agreement on and coordination

of the multitude of details of data representation inherent in multi-machine communication.

As a result of these changes all happening at once, network communications were not

very stable. Things that worked one day were hopelessly broken the next. Software that

was known-good became non-functional due to seemingly unrelated changes on other ma-

chines. Inconsistencies in configuration files caused much confusion, and the occasional

hardware failure became a major chore to track down. But there is an ironic twist to

all of t_:_ '_ _he 0he tliingiltha_ :_hade]t Possible to use the network at all was precisely

the source-of all the problemsi 'since every machine had two completely separate network

interfaces,it was generally P0ssibieto find a path through the network that worked well

enough. Finding that path, however, was time consuming and frustrating. Transferring a

single file typically took half a dozen tries using different routes.

Given this situation, it is not surprising that almost all of the system support on the

NAS was done on hard-wired terminals. This worked well enough for all of the machines

except the workstations. F_rst, there was the issue of geographic inconvenience: the Iris

terminals were spread over three floors in two separate buildings. In addition, these ter-

minals were already heavily used. As a result the network was the only feasible way to

maintain the workstations in a consistent and efficient manner. Given the network prob-

lems described above, this was harder than it sounds. The straightforward shell-scripts

[2] which were tried at first could not deal with errors gracefully. Next, a slightly more

complex strategy that included retry on failure was attempted. This had mixed results;

often a new version would be ready before the last version was fully distributed. There

were countless situations in which an intermittent networking failure between workstations

was eventually tracked down to incompatible versions of some piece of software.

As if this weren't bad enough, we were also tracking the official SGI releases because

some of the user's required XNS. Typically, there would be one or two XNS and three or four

TCP/IP operating systems running on different machines. To a large degree, the software

that was running on any particular machine was dictated by the desires of the primary

user's of that machine; once they got used to the quirks of a particular version_ there was

reluctance to upgrade to so me_hlng "better'!: Of course, this complicated administration,

and made some networking bugs impossible to track down.

The only way to get a handle on this situation was to log onto each machine in turn,

and verify that everything was in order. The network itself_ and the network software on

the workstations, was too unreliable to allow any other way. The only reason that it was

tolerable was that we fully expected it to eventually get better.

The Transition to Order

In retrospect, it is clear that many of the difficulties described above were the result of our

enthusiasm to get TCP/IP running on the workstations as soon as possible. The XNS-

based communication software which worked quite reliably on the IRIS was incompatible

with the rest of the NAS. But as that time, it was crucial to integrate the workstations

into the rest of the network, both on hyperchannel and ethernet.

Of course, this eventually happened. As the software improved, it became less critical

to install the latest fix as soon as it was done; the previous version would suffice until the

new one was fully tested. This was especially true of new kernels, which simplified llfe

considerably. And because there were fewer "fires", we had the time to develop a set of

tools to help manage the various version of the operating system. At one time, we could

install one of four or five completely different versions of the operating systems with one

command. This was invaluable for testing, development, and migration of new software to

user machines.

As the standard TCP/IP utilities (rsh, rcp, rlogin, telnet, ftp) became more robust,

it was possible to create shell scripts to keep various machines up-to-date. Since there

were so many fewer possible failure modes, it became possible to deal with all of them.

At one point, we decided to distribute an entirely new operating system over the network

by creating a huge archive, and expanding it automatically on every machine using a shell

script. Of course, after the expansion_ there were many customizations that had to be

performed on each machine; these were handled automatically by the shell script. This

approach worked quite well, and had many benefits related to the fact that it enforced the

restriction that all machines ended up looking exactly the same.

Although this resynchronization worked well, the shall script which controlled it was

quite complex. For example, when replacing every system file on the machine, it was

necessary to take great pains to avoid errors which would have left the workstation in an

inconsistent state. Otherwise, there are scenarios in which the machine would have to be

restored from tape.., but our Iris's did not have tape drives! There was also the problem

of replacing those programs which were running while the shell script was executing; these

had to be moved out of the way and deleted once the expansion was successfully completed.

So although this endeavor was considered a great success, the shell script in question was

far too large and fragile. It was clear that a more general solution would eventually be

needed.

At this point, all of the machines looked exactly alike, and new versions of programs were

being released at a sane rate. For obvious reasons, it became important to manage changes

in a well-defined fashion to avoid the earlier chaos. So we divided the workstations as

follows: three for development, twenty for users (with two of these also used for testing), and

one template machine. The test machines belonged to the more sophisticated, adventurous

users. The template machine could be used to rebuild any of the user machines. Software

migrated from development to the users via the test machines. There were two golden

rules: 1) don't install anything before the the test-users give their okay, and 2) always

install software on the template before distributing it to the users. Because we backed up

machine-specific files to the template, we could then rebuild any user machine in case of

disaster/_': :, _ ;:

Of course there were shell scz6pts to perform whatever commands were necessary on

each of thetwenty user machines, hut these weretoo slow. A more sophisticated error-

logging batch-oriented system was developed, but *hls solved the wrong problem. An

interactive approach to maintaining cur consistency was needed. To achieve the necessary

speed, all of the commands had to execute in parallel. A _od to manage parallel execution

of commands on remote machines was devdoped, and is discussed below.

In addition to this sort of parallel execution, a specialized tool was needed to perform

remote file distribution. In Order to claim that some arbitrary set of workstations were

running the same operating_ Syst_m_ Ii_erklI_r hundreds of_ w0uld have t_ be:the same_

This is clearly too much to manage by hand. And although TCP/IP provided the necessary

foundation for such a tool, that tool had yet to be developed. The important design

criteria were simplicity of use, sufficiently powerful, and programmable to allow it to handle

unforeseen problems. Luckily for us, the folks a_ University of California at Berkeley were

developing such a tool, which we were able to tailor for our own use.

The Tools

Concurrent Command Invocation

The Berkeley version of Unix includes the "rsh" program, which executes a single com-

mand on a remote system. What was needed, however, was the ability to execute a series

of commands on a group of remote systems. This, combined with the an interactive inter-

face, we felt had the makings of a very powerful tool. The tree-shell, a program derived

from the Berkeley rsh. i The tree-shell ("trsh") is so named because it distributes the

communication channels across multiple machines in a tree-like structure. For instance,

the top level trsh might be directly communicating to six intermediate machines. Each of

these, in turn, might be connected to five others. Organizing things in this was has two

benefits: it avoids the Unix limitation on the number of connections in a single process,

and it reduces the network impact of having thirty machines simultaneously sending their

responses to the top level machine. In addition, there is a small amount of processing at

each intermediate node, which helps distribute the computationa_l burden.

In a scheme such as this, presenting the output from a large number of machines in an

tTree-shell was written by David Tristram, a developer on the NAS project. Although he started with

rsh, the changes have been quite extensive (available from the author).

4

effective manner is a major concern. Trsh handles this problem in three ways: the machine

name precedes the output from every machine, this output is always presented in the same

order (specified at invocation time), and the top level trsh pages the output so that results

don't scroll of the screen unexpectedly.

The synchronization mechanism used to present the output in machine order is unex-

pectedly elegant. Since it is possible to determine when the connection to a remote machine

is closed (del_berateIy or due to some fa_Iure), it is feasible to assume that every machine

with an open connection will eventually respond. In other words, it will eve_u_y pro-

duce some output, and then print pri_ out a prompt:. So for each machine w_th an open

connection, trsh prints out the machine name, and copies the output from _h_t machine

to the screen until it read_ a prompt. It then goes on to the next machine. In most cases

this happens extremely quickly, since all the machines are done and waiting by the time

the first machine is handled.

The tree, like connection structure of trsh can nest to any depth as follows. Since trsh

is a program that can be executed like any other, trsh simply invokes another trsh on

each of its children (recursively) to create a tree of connections. Each invocation of trsh

collects the output from its children, and prints it out for its parent. The command-line

specification of this connection tree is recursively defined, and in practice, is trivial to use.

The one remaining essential feature is selective invocation of commands depending on

the machine name. By default, every command gets executed on every mach_e. The

method for restricting this is quite simple. Upon startup_ several aliases are defined for

every remote shell (in the C-shell aliases are simply command levelmacros). Among _hese

are on and not-on. In operation, on compares its first argument with the current machine

name. If it matches, the rest of the arguments are taken as a command and executed.

Otherwise it does nothing, and a prompt is printed out. Since these macros (like all

commands) are executed on all machines, the effect is as desired. Not-on is analogous,

and won't be described: This design is a good example of taking advantage of existing

capabilities of a widely used program (csh).

There are two other important macros: "hold" and "release". These control whether

the output from a command will: be printed or not. They work as follows: "hold" sets the

prompt to nil, and "release" sets it back to the default. Since the prompt is used to decide

when to print output (as described above), these also work as advertised. The main use

of these macros is to perform a multi-command task, with the output from just the first

machine being displayed, until it is desired to see the results from all of the other machines.

Remote File Distribution

Rdist [3], a program for remote file distribution, is part of 4.3 Berkeley Unix Its pur-

pose is to maintain identical copies of files over multiple hosts. Rdist provides a standard

"client/server" model, where the "client" machine distributes flies to the "server" ma-

5

chine(s). With its local enhancements 2, which are described only as part of the overall

description below, rdist has proved to be a most useful tool for many tasks, and especially

for workstation administratiom It has sensible defaults, an orthogonal set of options, and

a "language" well-suited to its stated task.

A concept basic to the operation of rdist is to only distribute files which need to be

distributed. This is accomplished by comparing the t_cal and remote values of five partic-

ular file attributes: the last modification da_e, the size of _he file in bytes_ the ownership

of the, file, the permissio_ bits o_ the file. amd _p:tionatly; a fu_ binary Comparison. Rdist

gathers this information on the :client machlne by simply reading itoff the disk, and on

the server machine by reques:_ing the information over a network connection. Only if any

of these attributes differ _s the file transferred _ the remo_e machine.

Once a file is transferred, these attributes win be ider_cal. This has important ram-

ifications when updating a large number of files: if for some reason rdist is interrupted,

it can continue where it left off with only minimal overhead (comparing the few bytes of

attribute information per file). Using these attributes also allows rdist to run in "verify"

mode, where instead of actually updating files_ it simpty prints out what it wouldupdate.

In addition to providing a degree of safety, tkis option is invaluable in tracking changes to

various machines.

There are several features of rdist which make it particularly appropriate for the system

administrator who must be concerned about a large number of machines. Most importantly,

it enables: him to automatically keep machines up-to-date, and to track changes. For

instance if unauthorized changes are made ir_ system directories, rdist wil_ report this; it

can be investigated. There is no: other practical way to check such things or_ 30 machines.

In addition, there is the capability to remove any file on the remote machine which does

not exist on the local machine. This ensures that both machines will be ezactly identical.

In essence, allows the system administrator to configure just the template machine, and

then clone any subtree of that of the template to any other machine trivial!y. Since rdist

even takes care of updating running programs, there is no special preparation necessary.

Rdist transparently handles many of the details associated with the common case of

installing few files on one remote machine. If any of the flies are directories (in Unix,

directories are simply a special type of file), rdist simply distributes the contents of the

directory recursively. If the necessary directories do not exist on the target, they are created

automatically. If the files are absolute pathnames, they are installed in the same place on

the remote machine; if not, they are installed relative to the users home directory. Sensible

defaults such as these make any program easier to use, and rdist is no exception.

Rdist was not designed in a vacuum - where functional similarities exist between rdist

and other Unix programs, an attempt was made to make rdist to conform to the existing

de facto standards. As a result, rdist uses the same network permission structure as the

2Available from the author; rdist has been ported to the Silicon Graphics Iris release 3.5, an Amdahl
5840 running UTS, and the Cray 2 running Unicos 2.0.

6

other Berkeley commands(rcp, rsh, rlogin). Since the NAS project has adopted these

conventions, rdist was easily integrated into our environment. The choice of command-line

options was obviously influenced by other programs. And the similarities between make

[4], which is most often used to compile only those source files which need recompilation,

and rdist, which is used to distribute only those files which are out-of-date, are striking.

All in all, we have found that rdist is as indispensable in the area of system administration

as make is for programming large projects.

In order to harness the full power of rdist, it is necessary to write a "distfile". This is

easy to do - the syntax of a distfile is fairly intuitive. There are three major capabilities

(in addition to all that has been discussed so far) which distfiles provide: they allow the

specification of files to ignore in its operation; they list arbitrary shetl commands to be

performed after installation; and they support distribution to multiple machines.

There are two types of commands basic to the specification of the files of interest:

install commands, and ezcept commands. The former can use the standard C-shell wildcard

characters to specify an arbitrary list of files: all of the FORTRAN fles in a particular

directory, for instance. The later use the standard Unix regular expression syntax (ala ed

or vi) to specify which files to ignore. Taken together, these commands allow for a fairly

general approach towards solving the problem of file specification.

In many cases, it is desirable to combine file installation with a few commands after

the installation. The fact the the name of the file being updated is available to commands

running on the remote machine makes this a very general mechanism. As an example, a

makefile for a particular program which runs on many different machines might rdlst the

source to one (test) machine of each type. The relevant distfile could then run make on

each of those machines, thereby ensuring that the latest version is always ready to test on

every machine. A technique very similar to this is in fact used to maintain rdist itself on

four different types of machines in the NAS.

The default for rdist is to update all of the machines listed in the distfile. It is easy,

however, to limit the changes to affect only a subset of these machines (for debugging, etc)

using command line options. Once the distfile is completely debugged, the normal mode

is to update all of the machines, which takes one command: "rdist'.

There are several minor features of distfiles which are worth mentioning. A macro

facility allows for shorter, more readable distfiles. It is possible to redefine any definition

in the distfile from the command line, which can be helpful in some circumstances. In

addition, it is possible to have labels, which can be jumped to, again, by command line

specification. And finally, it is possible to list a group of people to receive an electronic

mail message concerning the result of using that distfile.

Below is an example distfile, which is intended to be stir-documenting.

#

Example distfile

#

HOSTS = (igor rodan ernst chewy wk05)

BINARIES = (gsh bindkey)

MANUAL = (gsh.lw)

$(BINARIES) -> $(HOSTS)

#,Built in a source directory,

installed in /usr/local/bin

install /usr/local/bin;

rdist will preserve ownership and

permissions, but these are

owned by me...so we set them here.

special "chown root /usr/local/bin/gsh;

chmod 4755 /usr/local/bin/gsh";

$(MANUAL) _ -> $(HOSTS) ': : _ : k_:_

install /usr/man/u_man/manl/gsh.lw;

Remove the formatted one so that the

new one gets formatted

special "rm /usr/man/u_man/catl/gsh.lw.z";

/usr/local/bin -> $(MACHINES)

Make /usr/local/bin identical

-R means remove any remote files

which don't exist here

install -R;

These are only licensed for me

except (di3000 franz-lisp);

Send me mail.

notify raible@ames-nas.arpa;

Payoffs of These Tools

It is possible to think of the services offered by Unix as manipulating just two types of

objects: files and processes. It is perhaps because of this simple model that rdist and

trsh complement each other so well: rdist excels at managing large nurubers of files, while

trsh was designed to control multiple process simultaneously. With respect to system

administration, rdist is used to configure remote machines, while trsh can be used to

control them. In any case s they work well together, and solve most of our problems.

As a result, instead of chaos_ we are moving towards a more integrated environment.

Not only do all (user) workstations run the same software, but distributed applications are

becoming more and more common. This would not have been possible in the early chaotic

environment, but is an important point: in a very real sense, interactive and distributed

computing is what the NAS is all about.

The tools discussed here are also being used in areas other than workstation adminis-

tration. Rdist is used to keep the four Vaxes in sync, mostly because the concept has been

proven on the workstations. It is also used to maintain machine-independent data-bases,

such as Macsyma and emacs libraries, as well as TEX fonts on the different NAS machines.

Trsh has been used to purposefully stress the hyperchannel network by simultaneously

copying a large file from ten workstations to the Cray. This is useful for characterizing

traffic-induced bugs, and performance evaluation. Since rdist works so well with make it

is being used by developers to maintain programs on different machines because it elimi-

nates extraneous copying (due to rdist) and compiling (due to make). And finally, we are

experimenting with using rdist for backup to our mass storage system a

Of course, there are many other tools useful for these tasks, as well as for workstation

administration, but rdist and trsh are two that we have found to be particularly helpful.

Perhaps part of our success with these two programs is due to the fact that rather than

trying to do everything from scratch, they build upon the Unix environment. It is because

of this symbiosis that they not only perform admirably well in the areas for which they

have been designed, but have found other uses as well.

References

[1] BAILEY, F. R. Status and Projection of the NAS Program. NASA Technical Memo-

randum 88339, 1986.

[2] BOURNE, S. R. The Unix Shell. The Bell System Technical Journal 57_ 6 (1978),
1971-1990.

[3] COMPUTER SC, IENCE DIVISION, D. o. E. E., AND SCIENCE, C.. UNIX Program-

meres Manual, 4.2 Berkeley Software Distribution. University of California at Berkeley,

Berkeley, California, 1983.

[4] FELDMAN, S. I. Make -- a Program for Maintaining Computer Programs. Software

Practice and Ezpevience 9, 4 (1979), 255-265.

3Thanks to my colleague Creon Levit for his help in this area

